Monday, 6 February 2017

Equation Of Moving Average Filter

Ich muss einen gleitenden mittleren Filter mit einer Grenzfrequenz von 7,8 Hz entwerfen. Ich habe gleitende durchschnittliche Filter vor verwendet, aber soweit ich weiß, ist der einzige Parameter, der eingegeben werden kann, die Anzahl der zu durchschnittlichen Punkte. Wie kann sich dies auf eine Grenzfrequenz beziehen Die Inverse von 7,8 Hz beträgt 130 ms und Im arbeiten mit Daten, die bei 1000 Hz abgetastet werden. Bedeutet dies implizieren, dass ich sollte eine gleitende durchschnittliche Filter-Fenstergröße von 130 Proben verwenden, oder gibt es etwas anderes, das ich hier fehlte, ist der Filter, der in der Zeitdomäne zu entfernen verwendet wird Das Rauschen hinzugefügt und auch für Glättung Zweck, aber wenn Sie die gleiche gleitende durchschnittliche Filter im Frequenzbereich für Frequenztrennung dann Leistung wird am schlimmsten. So dass in diesem Fall nutzen Frequenzbereich Filter ndash user19373 Feb 3 16 at 5:53 Der gleitende Durchschnitt Filter (manchmal auch umgangssprachlich als Boxcar-Filter) hat eine rechteckige Impulsantwort: Oder anders ausgedrückt: Denken Sie daran, dass eine diskrete Zeit Frequenz Frequenzgang Gleich der diskreten Zeit-Fourier-Transformation ihrer Impulsantwort ist, können wir sie wie folgt berechnen: Was am meisten für Ihren Fall interessiert ist, ist die Amplitudenreaktion des Filters H (omega). Mit ein paar einfachen Manipulationen, können wir, dass in einer einfacher zu verstehen: Das sieht vielleicht nicht leichter zu verstehen. Allerdings wegen Eulers Identität. Erinnern, dass: Daher können wir schreiben, die oben als: Wie ich schon sagte, was Sie wirklich besorgt ist die Größe der Frequenzgang. So können wir die Größenordnung der oben genannten zu vereinfachen, um es weiter zu vereinfachen: Hinweis: Wir sind in der Lage, die exponentiellen Begriffe aus, weil sie nicht beeinflussen die Größe des Ergebnisses e 1 für alle Werte von Omega. Da xy xy für irgendwelche zwei endlichen komplexen Zahlen x und y ist, können wir schließen, daß die Anwesenheit der exponentiellen Terme die Gesamtgrößenreaktion nicht beeinflußt (sie beeinflussen die Systemphasenreaktion). Die resultierende Funktion innerhalb der Größenklammern ist eine Form eines Dirichlet-Kerns. Sie wird manchmal als periodische sinc-Funktion bezeichnet, weil sie der sinc-Funktion etwas im Aussehen ähnelt, aber stattdessen periodisch ist. Wie auch immer, da die Definition der Cutoff-Frequenz etwas unterspezifiziert ist (-3 dB Punkt -6 dB Punkt erste sidelobe Null), können Sie die obige Gleichung, um für was auch immer Sie brauchen, zu lösen. Im Einzelnen können Sie Folgendes tun: Stellen Sie H (omega) auf den Wert ein, der der Filterantwort entspricht, die Sie bei der Cutoff-Frequenz wünschen. Set Omega gleich der Cutoff-Frequenz. Um eine kontinuierliche Frequenz auf den diskreten Zeitbereich abzubilden, denken Sie daran, dass osga 2pi frac, wobei fs Ihre Abtastrate ist. Finden Sie den Wert von N, der Ihnen die beste Übereinstimmung zwischen der linken und der rechten Seite der Gleichung gibt. Das sollte die Länge des gleitenden Durchschnitts sein. Wenn N die Länge des gleitenden Mittelwerts ist, dann ist eine angenäherte Grenzfrequenz F (gültig für N gt 2) bei der normalisierten Frequenz Fffs: Der Kehrwert dieser Gleichung ist für große N asymptotisch korrekt und hat etwa 2 Fehler Für N2 und weniger als 0,5 für N4. P. S. Nach zwei Jahren, hier schließlich, was war der Ansatz folgte. Das Ergebnis beruht auf der Annäherung des MA-Amplitudenspektrums um f0 als Parabel (2. Ordnung) nach MA (Omega) ca. 1 (frac - frac) Omega2, die in der Nähe des Nulldurchgangs von MA (Omega) Frac durch Multiplikation von Omega mit einem Koeffizienten, der MA (Omega), ca. 10.907523 (frac-frac) Omega2 ergibt. Die Lösung von MA (Omega) - frac 0 liefert die obigen Ergebnisse, wobei 2pi F Omega. Alle der oben genannten bezieht sich auf die -3dB abgeschnitten Frequenz, das Thema dieser Post. Manchmal ist es zwar interessant, ein Dämpfungsprofil im Stoppband zu erhalten, das vergleichbar ist mit dem eines 1. Ordnung IIR-Tiefpassfilters (Einpol-LPF) mit einer gegebenen -3dB Grenzfrequenz (ein solcher LPF wird auch Leaky-Integrator genannt, Mit einem Pol nicht genau an DC, aber nah an ihm). Tatsächlich haben sowohl das MA und das 1. Ordnung IIR LPF -20dBdecade Slope im Stopband (man braucht ein größeres N als das, das in der Figur verwendet wird, N32, um dies zu sehen), während aber MA spektrale Nullen bei FkN und a hat 1f Evelope hat das IIR-Filter nur ein 1f-Profil. Wenn man ein MA-Filter mit ähnlichen Rauschfilterungs-Fähigkeiten wie dieses IIR-Filter erhalten möchte und die gleichgeschnittenen 3dB-Grenzfrequenzen anpaßt, würde er beim Vergleich der beiden Spektren erkennen, daß die Stoppbandwelligkeit des MA-Filters endet 3dB unter dem des IIR-Filters. Um die gleiche Stoppbandwelligkeit (d. h. dieselbe Rauschleistungsdämpfung) wie das IIR-Filter zu erhalten, können die Formeln wie folgt modifiziert werden: Ich fand das Mathematica-Skript zurück, wo ich die Unterbrechung für mehrere Filter einschließlich des MA-Werts berechnete. Das Ergebnis basiert auf der Annäherung des MA-Spektrums um f0 als Parabel nach MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) ca. N16F2 (N-N3) pi2. Und Ableitung der Kreuzung mit 1sqrt von dort. Ndash Massimo Jan 17 16 am 2: 08A Simple Moving Average ist ein Durchschnitt der Daten berechnet über einen Zeitraum von Zeit. Der gleitende Durchschnitt ist der populärste Preisindikator, der in technischen Analysen verwendet wird. Dieser Durchschnitt kann mit jedem Preis einschließlich der Hi, Low, Open oder Close verwendet werden, und kann auch auf andere Indikatoren angewendet werden. Ein gleitender Durchschnitt glättet eine Datenreihe, die in einem volatilen Markt sehr wichtig ist, da sie hilft, wichtige Trends zu identifizieren. Dundas Diagramm für ASP. NET hat vier Arten bewegliche Durchschnitte einschließlich einfach, exponentiell. Dreieckig. Und Gewichtet. Der wichtigste Unterschied zwischen den obigen gleitenden Durchschnitten ist, wie sie ihre Datenpunkte gewichten. Wir empfehlen Ihnen, mit den Finanzformeln zu lesen, bevor Sie fortfahren. Mithilfe von Finanzformeln erhalten Sie eine ausführliche Erläuterung, wie Sie Formeln verwenden können, und erläutert auch die verschiedenen Optionen, die Ihnen beim Anwenden einer Formel zur Verfügung stehen. Ein Liniendiagramm ist eine gute Wahl, wenn ein einfacher gleitender Durchschnitt angezeigt wird. Finanzinterpretation: Der "Moving Average" wird verwendet, um die Sicherheitspreise mit dem gleitenden Durchschnitt zu vergleichen. Das wichtigste Element, das bei der Berechnung des gleitenden Durchschnitts verwendet wird, ist ein Zeitraum, der dem beobachteten Marktzyklus entsprechen sollte. Der gleitende Durchschnitt ist ein nachlaufender Indikator und wird immer hinter dem Preis sein. Wenn der Preis folgt einem Trend der gleitende Durchschnitt ist sehr nah an den Wertpapieren Preis. Wenn ein Preis steigt, wird der gleitende Durchschnitt wahrscheinlich aufgrund des Einflusses der historischen Daten bleiben. Berechnung: Der gleitende Mittelwert wird nach folgender Formel berechnet: In der vorhergehenden Formel stellt der n-Wert eine Zeitperiode dar. Die häufigsten Zeiträume sind: 10 Tage, 50 Tage und 200 Tage. Ein gleitender Durchschnitt bewegt sich, da bei jedem neuen Datenpunkt der älteste Datenpunkt gelöscht wird. Ein einfacher gleitender Durchschnitt gibt jedem Datenpunktpreis gleiches Gewicht. Dieses Beispiel veranschaulicht, wie Sie einen 20-Tage-Moving-Durchschnitt mit Hilfe der Formelmethode berechnen können. Moving-Average Filter von Traffic-Daten Dieses Beispiel zeigt, wie die Datenverkehrsdaten mit Hilfe eines gleitenden Durchschnittsfilters mit einem 4-Stunden-Schiebefenster geglättet werden. Die folgende Differenzgleichung beschreibt einen Filter, der die aktuelle Stunde und die drei vorhergehenden Datenstunden mittelt. Importieren Sie die Verkehrsdaten und ordnen Sie die erste Spalte der Fahrzeugzählungen dem Vektor x zu. Erstellen Sie die Filterkoeffizientenvektoren. Berechnen Sie den 4-Stunden-gleitenden Durchschnitt der Daten und zeichnen Sie die ursprünglichen Daten und die gefilterten Daten. MATLAB und Simulink sind eingetragene Warenzeichen von The MathWorks, Inc. Bitte lesen Sie mathworkstrademarks für eine Liste anderer Marken, die Eigentum von The MathWorks, Inc. sind. Andere Produkt - oder Markennamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Eigentümer. Wähle dein Land


No comments:

Post a Comment